Predicting user behavior using data profiling and hidden Markov model

Bahaa Eddine Elbaghazaoui, Mohamed Amnai, Youssef Fakhri


Mental health disorders affect many aspects of patient’s lives, including emotions, cognition, and especially behaviors. E-health technology helps to collect information wealth in a non-invasive manner, which represents a promising opportunity to construct health behavior markers. Combining such user behavior data can provide a more comprehensive and contextual view than questionnaire data. Due to behavioral data, we can train machine learning models to understand the data pattern and also use prediction algorithms to know the next state of a person’s behavior. The remaining challenges for this issue are how to apply mathematical formulations to textual datasets and find metadata that aids to identify the person’s life pattern and also predict the next state of his comportment. The main idea of this work is to use a hidden Markov model (HMM) to predict user behavior from social media applications by analyzing and detecting states and symbols from the user behavior dataset. To achieve this goal, we need to analyze and detect the states and symbols from the user behavior dataset, then convert the textual data to mathematical and numerical matrices. Finally, apply the HMM model to predict the hidden user behavior states. We tested our program and identified that the log-likelihood was higher and better when the model fits the data. In any case, the results of the study indicated that the program was suitable for the purpose and yielded valuable data.


data profiling; hidden Markov model; machine learning; user behavior; user profiling;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).