PithaNet: a transfer learning-based approach for traditional pitha classification

Shahriar Shakil, Atik Asif Khan Akash, Nusrat Nabi, Mahmudul Hassan, Aminul Haque

Abstract


Pitha, pithe, or peetha are all Bangla words referring to a native and traditional food of Bangladesh as well as some areas of India, especially the parts of India where Bangla is the primary language. Numerous types of pithas exist in the culture and heritage of the Bengali and Bangladeshi people. Pithas are traditionally prepared and offered on important occasions in Bangladesh, such as welcoming a bride grooms, or bride, entertaining guests, or planning a special gathering of family, relatives, or friends. The traditional pitha celebration and pitha culture are no longer widely practiced in modern civilization. Consequently, the younger generation is unfamiliar with our traditional pitha culture. In this study, an effective pitha image classification system is introduced. convolutional neural network (CNN) pre-trained models EfficientNetB6, ResNet50, and VGG16 are used to classify the images of pitha. The dataset of traditional popular pithas is collected from different parts of Bangladesh. In this experiment, EfficientNetB6 and ResNet50 show nearly 90% accuracy. The best classification result was obtained using VGG16 with 92% accuracy. The main motive of this study is to revive the Bengali pitha tradition among young people and people worldwide, which will encourage many other researchers to pursue research in this domain.

Keywords


bengali pitha; convolutional neural network; deep learning; image classification; transfer learning;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i5.pp5431-5443

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).