Improved spectral mismatch and performance of a phosphor-converted light-emitting diode solar simulator

Napat Watjanatepin, Khanittha Wannakam, Paiboon Kiatsookkanatorn, Chaiyant Boonmee, Patcharanan Sritanauthaikorn

Abstract


A phosphor-converted light-emitting diode (LED) solar simulator is an illuminance device that produced irradiance intensity and spectral close to the sunlight. It is determined as spectral mismatch, non-uniformity of irradiance, and temporal instability. This paper has improved the LED solar simulator (LSS) system to have a spectral distribution consistent with the AM1.5G spectrum at 100%. It was developed as a new prototype to have the AAA class spectral characteristics, time instability, and inconsistency according to IEC 60904-9. The results showed that an optimal approach was to use phosphor-converted natural white LED (pc-nWLED), combining a monochromatic near-infrared (NIR) (730, 800, 850, 940, and 1,000 nm) as well as the proposed LSS system capable of generating 1,000 W/m2 irradiation over the test plane of 125×125 mm and operated continuously in a constant temperature LED state for at least 2 hours, therefore suitable for demonstration of solar cell features under standard test condition (STC) in the laboratory.

Keywords


instability; LED solar simulator; non-uniformity; phosphor-converted white LED; spectral mismatch; thermal analysis;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i5.pp4931-4941

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).