Energy-efficient device-to-device communication in internet of things using hybrid optimization technique

Yashoda M. Balakrishna, Vrinda Shivashetty

Abstract


Device-to-device (D2D) communication has grown into notoriety as a critical component of the internet of things (IoT). One of the primary limitations of IoT devices is restricted battery source. D2D communication is the direct contact between the participating devices that improves the data rate and delivers the data quickly by consuming less battery. An energy-efficient communication method is required to enhance the communication lifetime of the network by reducing the node energy dissipation. The clustering-based D2D communication method is maximally acceptable to boom the durability of a network. The oscillating spider monkey optimization (OSMO) and oscillating particle swarm optimization (OPSO) algorithms are used in this study to improve the selection of cluster heads (CHs) and routing paths for D2D communication. The CHs and D2D communication paths are selected depending on the parameters such as energy consumption, distance, end-to-end delay, link quality and hop count. A simulation environment is designed to evaluate and test the performance of the OSMO-OPSO algorithm with existing D2D communication algorithms (such as the GAPSO-H algorithm, adaptive resource-aware split-learning (ARES), bio-inspired cluster-based routing scheme (Bi-CRS), and European society for medical oncology (ESMO) algorithm). The results proved that the proposed technique outperformed with respect to traditional routing strategies regarding latency, packet delivery, energy efficiency, and network lifetime.

Keywords


cluster head; device to device communication; internet of things; spider monkey optimization particle swarm optimization;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i5.pp5418-5430

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).