Reinforcement learning-based security schema mitigating man-in-the-middle attacks in fog computing

Hossam Elmansy, Khaled Metwally, Khaled Badran


The fast emerging of internet of things (IoTs) has introduced fog computing as an intermediate layer between end-users and the cloud datacenters. Fog computing layer characterized by its closeness to end users for service provisioning than the cloud. However, security challenges are still a big concern in fog and cloud computing paradigms as well. In fog computing, one of the most destructive attacks is man-in-the-middle (MitM). Moreover, MitM attacks are hard to be detected since they performed passively on the network level. This paper proposes a MitM mitigation scheme in fog computing architecture. The proposal mapped the fog layer on software-defined network (SDN) architecture. The proposal integrated multi-path transmission control protocol (MPTCP), moving target defense (MTD) technique, and reinforcement learning agent (RL) in one framework that contributed significantly to improving the fog layer resources utilization and security. The proposed schema hardens the network reconnaissance and discovery, thus improved the network security against MitM attack. The evaluation framework was tested using a simulation environment on mininet, with the utilization of MPTCP kernel and Ryu SDN controller. The experimental results shows that the proposed schema maintained the network resiliency, improves resource utilization without adding significant overheads compared to the traditional transmission control protocol (TCP).


fog computing security; internet of things security; man-in-the-middle; moving target defense; multi-path transmission control protocol; reinforcement learning; software defined networking;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).