An enhanced fletcher-reeves-like conjugate gradient methods for image restoration
Abstract
Noise is an unavoidable aspect of modern camera technology, causing a decline in the overall visual quality of the images. Efforts are underway to diminish noise without compromising essential image features like edges, corners, and other intricate structures. Numerous techniques have already been suggested by many researchers for noise reduction, each with its unique set of benefits and drawbacks. Denoising images is a basic challenge in image processing. We describe a two-phase approach for removing impulse noise in this study. The adaptive median filter (AMF) for salt-and-pepper noise identifies noise candidates in the first phase. The second step minimizes an edge-preserving regularization function using a novel hybrid conjugate gradient approach. To generate the new improved search direction, the new algorithm takes advantage of two well-known successful conjugate gradient techniques. The descent property and global convergence are proven for the new methods. The obtained numerical results reveal that, when applied to image restoration, the new algorithms are superior to the classical fletcher reeves (FR) method in the same domain in terms of maintaining image quality and efficiency.
Keywords
Conjugate gradient methods; global convergence; image restoration; impulse noise reduction; optimization
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i6.pp6268-6276
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).