Image reconstruction through compressive sampling matching pursuit and curvelet transform

Shashi Kiran Seetharamaswamy, Suresh Kaggere Veeranna

Abstract


An interesting area of research is image reconstruction, which uses algorithms and techniques to transform a degraded image into a good one. The quality of the reconstructed image plays a vital role in the field of image processing. Compressive Sampling is an innovative and rapidly growing method for reconstructing signals. It is extensively used in image reconstruction. The literature uses a variety of matching pursuits for image reconstruction. In this paper, we propose a modified method named compressive sampling matching pursuit (CoSaMP) for image reconstruction that promises to sample sparse signals from far fewer observations than the signal’s dimension. The main advantage of CoSaMP is that it has an excellent theoretical guarantee for convergence. The proposed technique combines CoSaMP with curvelet transform for better reconstruction of image. Experiments are carried out to evaluate the proposed technique on different test images. The results indicate that qualitative and quantitative performance is better compared to existing methods.

Keywords


Compressive sampling; compressive sampling matching pursuit; compressive sensing; image reconstruction; matching pursuit

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i6.pp6277-6284

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).