Dysgraphia detection based on convolutional neural networks and child-robot interaction

Soukaina Gouraguine, Mustapha Riad, Mohammed Qbadou, Khalifa Mansouri

Abstract


Dysgraphia is a disorder of expression with the writing of letters, words, and numbers. Dysgraphia is one of the learning disabilities attributed to the educational sector, which has a strong impact on the academic, motor, and emotional aspects of the individual. The purpose of this study is to identify dysgraphia in children by creating an engaging robot-mediated activity, to collect a new dataset of Latin digits written exclusively by children aged 6 to 12 years. An interactive scenario that explains and demonstrates the steps involved in handwriting digits is created using the verbal and non-verbal behaviors of the social humanoid robot Nao. Therefore, we have collected a dataset that contains 11,347 characters written by 174 participants with and without dysgraphia. And through the advent of deep learning technologies and their success in various fields, we have developed an approach based on these methods. The proposed approach was tested on the generated database. We performed a classification with a convolutional neural network (CNN) to identify dysgraphia in children. The results show that the performance of our model is promising, reaching an accuracy of 91%.

Keywords


convolutional neural network; dysgraphia; handwriting digits; interactive scenario; social humanoid robot Nao;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i3.pp2999-3009

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).