Context-aware recommender system for multi-user smart home

Shymaa Sobhy, Eman M. Mohamed, Arabi Keshk, Mahmoud Hussein


Smart home is one of the most important applications of the internet of things (IoT). Smart home makes life simpler, easier to control, saves energy based on user’s behavior and interaction with the home appliances. Many existing approaches have designed a smart home system using data mining algorithms. However, these approaches do not consider multiusers that exist in the same location and time (which needs a complex control). They also use centralized mining algorithm, then the system’s efficiency is reduced when datasets increase. Therefore, in this paper, we firstly build a context-aware recommender system that considers multi-user’s preferences and solves their conflicts by using unsupervised algorithms to deliver useful recommendation services. Secondly, we improve smart home’s responsive using parallel computing. The results reveal that the proposed method is better than existing approaches.


data mining; internet of things; parallel computing; recommender system; smart homes; unsupervised algorithms;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578