Identification of monolingual and code-switch information from English-Kannada code-switch data
Abstract
Code-switching is a very common occurrence in social media communication, predominantly found in multilingual countries like India. Using more than one language in communication is known as code-switching or code-mixing. Some of the important applications of code-switch are machine translation (MT), shallow parsing, dialog systems, and semantic parsing. Identifying code-switch and monolingual information is useful for better communication in online networking websites. In this paper, we performed a character level n-gram approach to identify monolingual and code-switch information from English-Kannada social media data. We paralleled various machine learning techniques such as naïve Bayes (NB), support vector classifier (SVC), logistic regression (LR) and neural network (NN) on English-Kannada code-switch (EKCS) data. From the proposed approach, it is observed that the character level n-gram approach provides 1.8% to 4.1% of improvement in terms of Accuracy and 1.6% to 3.8% of improvement in F1-score. Also observed that SVC and NN techniques are outperformed in terms of accuracy (97.9%) and F1-score (98%) with character level n-gram.
Keywords
character level n-gram; code-switch text; English-Kannada; machine learning techniques; monolingual text;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i5.pp5632-5640
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).