Analysis of Nifty 50 index stock market trends using hybrid machine learning model in quantum finance

Chinthakunta Manjunath, Balamurugan Marimuthu, Bikramaditya Ghosh


Predicting equities market trends is one of the most challenging tasks for market participants. This study aims to apply machine learning algorithms to aid in accurate Nifty 50 index trend predictions. The paper compares and contrasts four forecasting methods: artificial neural networks (ANN), support vector machines (SVM), naive bayes (NB), and random forest (RF). In this study, the eight technical indicators are used, and then the deterministic trend layer is used to translate the indications into trend signals. The principal component analysis (PCA) method is then applied to this deterministic trend signal. This study's main influence is using the PCA technique to find the essential components from multiple technical indicators affecting stock prices to reduce data dimensionality and improve model performance. As a result, a PCA-machine learning (ML) hybrid forecasting model was proposed. The experimental findings suggest that the technical factors are signified as trend signals and that the PCA approach combined with ML models outperforms the comparative models in prediction performance. Utilizing the first three principal components (percentage of explained variance=80%), experiments on the Nifty 50 index show that support vector classifer (SVC) with radial basis function (RBF) kernel achieves good accuracy of (0.9968) and F1-score (0.9969), and the RF model achieves an accuracy of (0.9969) and F1-Score (0.9968). In area under the curve (AUC) performance, SVC (RBF and Linear kernels) and RF have AUC scores of 1.


National stock exchange fifty; principle component analysis; stock market; technical indicators; time series forecast;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578