Optimal interdigitated electrode sensor design for biosensors using multi-objective particle-swarm optimization

Issa Sabiri, Hamid Bouyghf, Abdelhadi Raihani

Abstract


Interdigitated electrodes (IDEs) are commonly employed in biological cellular characterization techniques such as electrical cell-substrate impedance sensing (ECIS). Because of its simple production technique and low cost, interdigitated electrode sensor design is critical for practical impedance spectroscopy in the medical and pharmaceutical domains. The equivalent circuit of an IDE was modeled in this paper, it consisted of three primary components: double layer capacitance, Cdl, solution capacitance, CSol, and solution resistance, RSol. One of the challenging optimization challenges is the geometric optimization of the interdigital electrode structure of a sensor. We employ metaheuristic techniques to identify the best answer to problems of this kind. multi-objective optimization of the IDE using multi-objective particle swarm optimization (MOPSO) was achieved to maximize the sensitivity of the electrode and minimize the Cut-off frequency. The optimal geometrical parameters determined during optimization are used to build the electrical equivalent circuit. The amplitude and phase of the impedance versus frequency analysis were calculated using EC-LAB® software, and the corresponding conductivity was determined.


Keywords


impedance spectroscopy; interdigitated electrodes; optimization; particle swarm optimization; algorithm; sensitivity

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i3.pp2608-2617

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).