Wearable sensor-based human activity recognition with ensemble learning: a comparison study

Yee Jia Luwe, Chin Poo Lee, Kian Ming Lim


The spectacular growth of wearable sensors has provided a key contribution to the field of human activity recognition. Due to its effective and versatile usage and application in various fields such as smart homes and medical areas, human activity recognition has always been an appealing research topic in artificial intelligence. From this perspective, there are a lot of existing works that make use of accelerometer and gyroscope sensor data for recognizing human activities. This paper presents a comparative study of ensemble learning methods for human activity recognition. The methods include random forest, adaptive boosting, gradient boosting, extreme gradient boosting, and light gradient boosting machine (LightGBM). Among the ensemble learning methods in comparison, light gradient boosting machine and random forest demonstrate the best performance. The experimental results revealed that light gradient boosting machine yields the highest accuracy of 94.50% on UCI-HAR dataset and 100% on single accelerometer dataset while random forest records the highest accuracy of 93.41% on motion sense dataset.


ensemble learning; human activity recognition; light gradient boosting machine; machine learning; random forest;

Full Text:


DOI: http://doi.org/10.11591/ijece.v13i4.pp4029-4040

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).