Three-phase four-wire shunt hybrid active power filter model with model predictive control in imbalance distribution networks
Abstract
This paper presents a harmonic reduction and load imbalance model in a three-phase four-wire distribution network. This model uses a hybrid active power filter, a passive inductor and capacitor filter, and an active power filter in the form of a three-phase, four-leg connected grid inverter. The switching of the voltage source converter on this filter uses finite control set model predictive control (FCS-MPC). Control of this hybrid active power filter uses model predictive control (MPC) with a cost function, comparing the reference current and prediction current with mathematical modelling of the circuit. The reference current is taken from the load current by extracting dq, and the predicted current is obtained from the iteration of the voltage source converter (VSC) switching pattern. Each combination is compared with the reference current in the cost function to get the smallest error used as a power switching signal. Modelling was validated by using MATLAB Simulink. The simulation results prove a decrease in harmonics at a balanced load from 22.16% to 4.2% and at an unbalanced load, reducing the average harmonics to 4.74%. The simulation also decreases the load current imbalance in the distribution network. Reducing the current in the neutral wire from 62.01%-0.42% and 11.29-0.3 A.
Keywords
Finite control set-model predictive control; Harmonics; Shunt hybrid active power filter; Unbalanced
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i6.pp5923-5937
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).