Double sliding window variance detection-based time-of-arrival estimation in ultra-wideband ranging systems

Ibrahim Yassine Nouali, Zohra Slimane, Abdelhafid Abdelmalek

Abstract


Ultra-wideband (UWB) ranging via time-of-arrival (TOA) estimation method has gained a lot of research interests because it can take full advantage of UWB capabilities. Energy detection (ED) based TOA estimation technique is widely used in the area due to its low cost, low complexity and ease of implementation. However, many factors affect the ranging performance of the ED-based methods, especially, non-line-of-sight (NLOS) condition and the integration interval. In this context, a new TOA estimation method is developed in this paper. Firstly, the received signal is denoised using a five-level wavelet decomposition, next, a double sliding window algorithm is applied to detect the change in the variance information of the received signal, the first path (FP) TOA is then calculated according to the first variance sharp increase. The simulation results using the CM1 and CM2 IEEE 802.15.4a channel models, prove that our proposed approach works effectively compared with the conventional ED-based methods.

Keywords


Energy detection; Ranging; Sliding window; Time-of-arrival; Ultra-wideband; Variance detection

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i6.pp6303-6310

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578