Radio-frequency circular integrated inductors sizing optimization using bio-inspired techniques

Imad El hajjami, Bachir Benhala


In this article, a comparative study is accomplished between three of the most used swarm intelligence (SI) techniques; namely artificial bee colony (ABC), ant colony optimization (ACO), and particle swarm optimization (PSO) to carry out the optimal design of radio-frequency (RF) spiral inductors, the three algorithms are applied to the cost function of RF circular inductors for 180 nm beyond 2.50 GHz, the aim is to ensure optimal performance with less error in inductance, and a high-quality factor when compared to electromagnetic simulation. Simulation experiments are achieved and performances regarding convergence velocity, robustness, and computing time are checked. Also, this paper shows an impact study of technological parameters and geometric features on the inductance and the quality factor of the studied integrated inductor. The building method of constraints design with algorithms used has given good results and electromagnetic simulations are of good accuracy with an error of 2.31% and 4.15% on the quality factor and inductance respectively. The simulation shows that ACO provides more accuracy in circuit size and fewer errors than ABC and PSO, while PSO and ABC are better in terms of convergence velocity.


Electromagnetic-simulation; Integrated inductor; Meta-heuristics; Optimization; Quality factor; RF circuits

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578