Machine learning based augmented reality for improved learning application through object detection algorithms

Anasse Hanafi, Lotfi Elaachak, Mohammed Bouhorma


Detection of objects and their location in an image are important elements of current research in computer vision. In May 2020, Meta released its state-of-the-art object-detection model based on a transformer architecture called detection transformer (DETR). There are several object-detection models such as region-based convolutional neural network (R-CNN), you only look once (YOLO) and single shot detectors (SSD), but none have used a transformer to accomplish this task. These models mentioned earlier, use all sorts of hyperparameters and layers. However, the advantages of using a transformer pattern make the architecture simple and easy to implement. In this paper, we determine the name of a chemical experiment through two steps: firstly, by building a DETR model, trained on a customized dataset, and then integrate it into an augmented reality mobile application. By detecting the objects used during the realization of an experiment, we can predict the name of the experiment using a multi-class classification approach. The combination of various computer vision techniques with augmented reality is indeed promising and offers a better user experience.


computer vision; detection transformer; neural network; object detection; transformer;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).