Detecting network attacks model based on a convolutional neural network

Teba Ali Jasim Ali, Muna M. Taher Jawhar

Abstract


Due to the increasing use of networks at present, Internet systems have raised many security problems, and statistics indicate that the rate of attacks or intrusions has increased excessively annually, and in the event of any malicious attack on network vulnerabilities or information systems, it may lead to serious disasters, violating policies on network security, i.e., “confidentiality, integrity, and availability” (CIA). Therefore, many detection systems, such as the intrusion detection system, appeared. In this paper, we built a system that detects network attacks using the latest machine learning algorithms and a convolutional neural network based on a dataset of the CSE-CIC-IDS2018. It is a recent dataset that contains a set of common and recent attacks. The detection rate is 99.7%, distinguishing between aggressive attacks and natural assertiveness.


Keywords


convolutional neural network; CSE-CIC-IDS2018; deep learning; network security;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i3.pp3072-3078

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).