A simplified and novel technique to retrieve color images from hand-drawn sketch by human
Abstract
With the increasing adoption of human-computer interaction, there is a growing trend of extracting the image through hand-drawn sketches by humans to find out correlated objects from the storage unit. A review of the existing system shows the dominant use of sophisticated and complex mechanisms where the focus is more on accuracy and less on system efficiency. Hence, this proposed system introduces a simplified extraction of the related image using an attribution clustering process and a cost-effective training scheme. The proposed method uses K-means clustering and bag-of-attributes to extract essential information from the sketch. The proposed system also introduces a unique indexing scheme that makes the retrieval process faster and results in retrieving the highest-ranked images. Implemented in MATLAB, the study outcome shows the proposed system offers better accuracy and processing time than the existing feature extraction technique.
Keywords
Accuracy; Feature; Image retrieval; Learning; Sketch
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i6.pp6140-6148
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).