Speech emotion recognition using 2D-convolutional neural network
Abstract
This research proposes a speech emotion recognition model to predict human emotions using the convolutional neural network (CNN) by learning segmented audio of specific emotions. Speech emotion recognition utilizes the extracted features of audio waves to learn speech emotion characteristics; one of them is mel frequency cepstral coefficient (MFCC). Dataset takes a vital role to obtain valuable results in model learning. Hence this research provides the leverage of dataset combination implementation. The model learns a combined dataset with audio segmentation and zero padding using 2D-CNN. Audio segmentation and zero padding equalize the extracted audio features to learn the characteristics. The model results in 83.69% accuracy to predict seven emotions: neutral, happy, sad, angry, fear, disgust, and surprise from the combined dataset with the segmentation of the audio files.
Keywords
2D-CNN; Audio segmentation; Mel frequency cepstral coefficient Speech emotion recognition
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i6.pp6594-6601
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).