A review paper: optimal test cases for regression testing using artificial intelligent techniques
Abstract
The goal of the testing process is to find errors and defects in the software being developed so that they can be fixed and corrected before they are delivered to the customer. Regression testing is an essential quality testing technique during the maintenance phase of the program as it is performed to ensure the integrity of the program after modifications have been made. With the development of the software, the test suite becomes too large to be fully implemented within the given test cost in terms of budget and time. Therefore, the cost of regression testing using different techniques should be reduced, here we dealt many methods such as retest all technique, regression test selection technique (RTS) and test case prioritization technique (TCP). The efficiency of these techniques is evaluated through the use of many metrics such as average percentage of fault detected (APFD), average percentage block coverage (APBC) and average percentage decision coverage (APDC). In this paper we dealt with these different techniques used in test case selection and test case prioritization and the metrics used to evaluate their efficiency by using different techniques of artificial intelligent and describe the best of all.
Keywords
fuzzy logic; machine learning; neural network; regression testing; swarm intelligence;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i2.pp1803-1816
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).