Automatic COVID-19 lung images classification system based on convolution neural network

Lamia Nabil Mahdy, Ahmed Ibrahim Bahgat El Seddawy, Kadry Ali Ezzat

Abstract


Coronavirus disease (COVID-19) still has disastrous effects on human life around the world. For fight that disease. Examination on the patients who have been sucked in quick and cheap way is necessary. Radiography is most effective step closer to this target. Chest X-ray is readily obtainable and cheap option. Also, because COVID-19 is a virus, distinguish COVID-19 from common viral pneumonia from common viral pneumonia is difficult. In this study, X-ray images of 500, 500, 500, and 500 patients for healthy controls, typical viral pneumonia, bacterial pneumonia and COVID-19, were collected respectively. To our knowledge, this was the first quaternary classification study that also included classical viral pneumonia. To efficiently capture nuances in X-ray images, a new model was created by applying convolution neural network for accurate image classification. Our model outperformed to achieve an overall accuracy, sensitivity, specificity, F1-score, and area under curve (AUC) of 0.98, 0.97, 0.98, 0.97, and 0.99 respectively.

Keywords


classification; computed tomography; convolution neural network; COVID-19; X-Ray;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i5.pp5573-5579

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).