Low complexity physical layer security approach for 5G internet of things

Kiran Vinayak Shanbhag, Dayakshini Sathish

Abstract


Fifth-generation (5G) massive machine-type communication (mMTC) is expected to support the cellular adaptation of internet of things (IoT) applications for massive connectivity. Due to the massive access nature, IoT is prone to high interception probability and the use of conventional cryptographic techniques in these scenarios is not practical considering the limited computational capabilities of the IoT devices and their power budget. This calls for a lightweight physical layer security scheme which will provide security without much computational overhead and/or strengthen the existing security measures. Here a shift based physical layer security approach is proposed which will provide a low complexity security without much changes in baseline orthogonal frequency division multiple access (OFDMA) architecture as per the low power requirements of IoT by systematically rearranging the subcarriers. While the scheme is compatible with most fast Fourier transform (FFT) based waveform contenders which are being proposed in 5G especially in mMTC and ultra-reliable low latency communication (URLLC), it can also add an additional layer of security at physical layer to enhanced mobile broadband (eMBB).

Keywords


Encryption; internet of things; orthogonal frequency division multiple access; physical layer security; subcarrier diversity

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i6.pp6466-6475

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).