Advanced approach for encryption using advanced encryption standard with chaotic map

Yahia Alemami, Mohamad Afendee Mohamed, Saleh Atiewi


At present, security is significant for individuals and organizations. All information need security to prevent theft, leakage, alteration. Security must be guaranteed by applying some or combining cryptography algorithms to the information. Encipherment is the method that changes plaintext to a secure form called cipherment. Encipherment includes diverse types, such as symmetric and asymmetric encipherment. This study proposes an improved version of the advanced encryption standard (AES) algorithm called optimized advanced encryption standard (OAES). The OAES algorithm utilizes sine map and random number to generate a new key to enhance the complexity of the generated key. Thereafter, multiplication operation was performed on the original text, thereby creating a random matrix (4×4) before the five stages of the coding cycles. A random substitution-box (S-Box) was utilized instead of a fixed S-Box. Finally, we utilized the eXclusive OR (XOR) operation with digit 255, also with the key that was generated last. This research compared the features of the AES and OAES algorithms, particularly the extent of complexity, key size, and number of rounds. The OAES algorithm can enhance complexity of encryption and decryption by using random values, random S-Box, and chaotic maps, thereby resulting in difficulty guessing the original text.


advanced encryption standard; avalanche effect; sine map; throughput;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578