Efficient systematic turbo polar decoding based on optimized scaling factor and early termination mechanism

Ahmed A. Hamad, Mohammed Taih Gatte, Laith Ali Abdul-Rahaim

Abstract


In this paper, an efficient early termination (ET) mechanism for systematic turbo-polar code (STPC) based on optimal estimation of scaling factor (SF) is proposed. The gradient of the regression line which best fits the distance between a priori and extrinsic information is used to estimate the SF. The multiplication of the extrinsic information by the proposed SF presents effectiveness in resolving the correlation issue between intrinsic and extrinsic reliability information traded between the two typical parallel concatenated soft-cancellation (SCAN) decoders. It is shown that the SF has improved the conventional STPC by about 0.3 dB with an interleaver length of 64 bits, and about 1 dB over the systematic polar code (SPC) at a bit error rate (BER) of . A new scheme is proposed as a stopping criterion, which is mainly based on the estimated value of SF at the second component decoder and the decoded frozen bits for each decoding iteration. It is shown that the proposed ET results in halving the average number of iterations (ANI) without adding considerable complexity. Moreover, the modified codes present comparable results in terms of BER to the codes that utilize fix number of iterations.

Keywords


early termination; polar code; scaling factor; soft cancellation; systematic turbo-polar code;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i1.pp629-637

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).