Classification of arecanut using machine learning techniques

Shabari Shedthi Billadi, Madappa Siddappa, Surendra Shetty, Vidyasagar Shetty


In agricultural domain research, image processing and machine learning techniques play an important role. This paper provides a unique solution for classifying the good and defective arecanuts based on their color, texture, and density value. In the market different varieties of arecanut are available. Usually, qualitative sorting is done manually, and this can be replaced by applying machine vision techniques to grade the arecanut. Classification of arecanut based on quality is done using various machine learning techniques and it is observed that artificial neural networks give good results compared to other classifiers like logistic regression, k-nearest neighbor, naive Bayes classifiers, and support vector machine. A unique density feature is considered here for better classification. The result of classifiers without considering the density feature is compared with respect to the density feature and it is observed that artificial neural networks work better than the others. The proposed method works effectively for classifying arecanut with an accuracy of 98.8%.


agriculture; arecanut; classifying; image processing; machine learning;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).