Characterization of Arabic sibilant consonants
Abstract
The aim of this study is to develop an automatic speech recognition system in order to classify sibilant Arabic consonants into two groups: alveolar consonants and post-alveolar consonants. The proposed method is based on the use of the energy distribution, in a consonant-vowel type syllable, as an acoustic cue. The application of this method on our own corpus reveals that the amount of energy included in a vocal signal is a very important parameter in the characterization of Arabic sibilant consonants. For consonants classifications, the accuracy achieved to identify consonants as alveolar or post-alveolar is 100%. For post-alveolar consonants, the rate is 96% and for alveolar consonants, the rate is over 94%. Our classification technique outperformed existing algorithms based on support vector machines and neural networks in terms of classification rate.
Keywords
alveolar; classification; energy bands; post-alveolar; sibilant fricatives;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i2.pp1997-2008
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).