Long term temperature stability of thermal cycler developed using low profile microprocessor cooler

Setyawan Purnomo Sakti, Adin Okta Triqadafi, Aldi Dwi Putra, Triswantoro Putro, Dewi Anggraeni

Abstract


Developing a low-cost thermal cycler for a polymerase chain reaction (PCR) is becoming interested in the pandemic era caused by viruses. PCR is the standard gold for the diagnostic. However, in a low-income country, the availability of the device is limited. In this work, the development of a thermal cycler uses electronic modules available in the market. The central part is thermoelectric for heating and cooling, an embedded system to control, and a low-profile cooling fan. The system temperature control used a combination of feedforward, bang-bang, and proportional-integral-derivative (PID) control. The control parameter of the PID was successfully obtained by using Chien servo tuning. The feedforward and bang-bang control are used to optimize the cooling cycle and minimize the rise time. The system shows a well-suited temperature accuracy at the denaturation, annealing, and extension temperature with a temperature deviation of less than 0.5 °C. System performance is maintained even though the system has been running non-stop for 24 hours. The low-profile cooling fan, which is usually used for CPU cooling, shows good results in maintaining temperature stability.

Keywords


Bang-bang; Proportional integral derivative; Temperature stability; Thermal cycler; Thermoelectric

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i1.pp278-287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).