Machine learning for Arabic phonemes recognition using electrolarynx speech

Zinah Jaffar Mohammed Ameen, Abdulkareem Abdulrahman Kadhim

Abstract


Automatic speech recognition system is one of the essential ways of interaction with machines. Interests in speech based intelligent systems have grown in the past few decades. Therefore, there is a need to develop more efficient methods for human speech recognition to ensure the reliability of communication between individuals and machines. This paper is concerned with Arabic phoneme recognition of electrolarynx device. Electrolarynx is a device used by cancer patients having vocal laryngeal cords removed. Speech recognition here is considered to find the preferred machine learning model that can classify phonemes produced by electrolarynx device. The phonemes recognition employs different machine learning schemes, including convolutional neural network, recurrent neural network, artificial neural network (ANN), random forest, extreme gradient boosting (XGBoost), and long short-term memory. Modern standard Arabic is utilized for testing and training phases of the recognition system. The dataset covers both an ordinary speech and electrolarynx device speech recorded by the same person. Mel frequency cepstral coefficients are considered as speech features. The results show that the ANN machine learning method outperformed other methods with an accuracy rate of 75%, a precision value of 77%, and a phoneme error rate (PER) of 21.85%.


Keywords


Electrolarynx speech; Machine learning; Mel frequency cepstral coefficients; Performance evaluation

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i1.pp400-412

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).