A predictive sliding mode control for quadrotor’s trackingtrajectory subject to wind gusts and uncertainties

Dounia Meradi, Zoubir Abdeslem Benselama, Ramdane Hedjar


In this paper, a predictive sliding mode control (PSMC) strategy for the quadrotors tracking trajectory problem is proposed. This strategy aims to combine the advantages of sliding mode control (SMC) and non-linear model predictive control (NMPC) to improve the tracking control performance for quadrotors in terms of optimality, inputs/states constraints satisfaction, and strong robustness against disturbances. A comparative study of three popular controllers: the SMC, NMPC, and the integral backstepping control (IBC) is performed with different criteria. Accordingly, IBC and SMC show less computational time and strong robustness, while NMPC has minimum control effort. The discrete Dryden turbulence model is used as a benchmark model to represent the wind effect on the trajectory tracking accuracy. The effectiveness of the proposed method PSMC has been proven and compared with discrete-time slidingmode control (DSMC) and NMPC in several scenarios. Simulation results show that under both wind turbulence and time-variant uncertainties, the PSMC outperforms the other controllers by providing simultaneously disturbance rejection and guarantee that the control inputs are within bounded constraints.


Discrete-time sliding mode control; Non-linear model predictive control; Predictive sliding mode control; Quadrotor; Wind gusts

Full Text:


DOI: http://doi.org/10.11591/ijece.v12i5.pp4861-4875

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).