Few-mode optical fiber surface plasmon resonance sensor with controllable range of measured refractive index

Wael Abu Shehab, Ahmad Salah, Wael Al-Sawalmeh, Haitham Alashaary


A few-mode optical fiber surface plasmon resonance sensor with graphene layer is investigated, firstly, with the aim of studying the behavior of the guided modes and, secondly, with the aim of determining the range of the measured refractive index for some selected few-mode fibers. The results show that as the number of modes propagated in the fiber increases, the maximum sensitivity of a particular mode decreases while the range of the measured refractive index of that mode increases. Also, it is shown that the range can be easily tuned with sensitivity consideration by only adjusting the operating wavelength without any modification of the sensor, which is desirable from practical point of view. In addition, it is shown that the core diameter of the fiber should be chosen according to sensitivity and range needing, where a compromise between them must be found. The study presented in this paper can significantly help in developing new sensing techniques, such as multi-parameter sensing, by monitoring the various responses of the modes. Also, it can be used to customize the sensor for specific sensing applications in various fields, especially to measure refractive indices in subranges of 1.38 to 1.46.


Few-mode; Graphene; Optical fiber sensor; Refractive index; Sensitivity

Full Text:


DOI: http://doi.org/10.11591/ijece.v13i1.pp454-464

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).