Iris recognition based on 2D Gabor filter

Yahya Ismail Ibrahim, Enaam Abdul-Jabbar Sultan


Iris recognition is a type of biometrics technology that is based on physiological features of the human body. The objective of this research is to recognize and identify iris among many irises that are stored in a visual database. This study employed a left and right iris biometric framework for inclusion decision processing by combining image processing and artificial bee colony. The proposed approach was evaluated on a visual database of 280 colored iris pictures. The database was then divided into 28 clusters. Images were preprocessed and texture features were extracted based Gabor filters to capture both local and global details within an iris. The technique begins by comparing the attributes of the online-obtained iris picture with those of the visual database. This technique either generates a reject or approve message. The consequences of the intended work reflect the output’s accuracy and integrity. This is due to the careful selection of attributes, as well as the deployment of an artificial bee colony and data clustering, which decreased complexity and eventually increased identification rate to 100%. We demonstrate that the proposed method achieves state-of-the-art performance and that our recommended procedures outperform existing iris recognition systems.


Biometric; Enhancement; Gabor; Iris; Segmentation

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).