Advanced control scheme of doubly fed induction generator for wind turbine using second sliding mode control

Hafida Bekouche, Abdelkader Chaker

Abstract


This paper describes a speed control device for generating electrical energy on an electricity network based on the doubly fed induction generator(DFIG) used for wind power conversion systems. At first, a double-fed induction generator model was constructed. A control law is formulated to govern the flow of energy between the stator of a DFIG and the energy network using three types of controllers: proportional integral (PI), sliding mode controller (SMC) and second order sliding mode controller (SOSMC).Their different results in terms of power reference tracking, reaction to unexpected speed fluctuations, sensitivity to perturbations, and resilience against machine parameter alterations are compared. MATLAB/Simulink was used to conduct the simulations for the preceding study. Multiple simulations have shown very satisfying results, and the investigations demonstrate the efficacy and power-enhancing capabilities of the suggested control system.

Keywords


Active power; Doubly fed induction generator; Proportional integral; Reactive power; Second order sliding mode controller; Sliding mode controller; Wind turbine

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i3.pp2562-2570

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).