Smart optimization in 802.11p media access control protocol for vehicular ad hoc network

Shahirah Mohamed Hatim, Haryani Haron, Shamsul Jamel Elias, Nor Shahniza Kamal Bashah


The innovative idea presented in this research is that advancements in automotive networks and embedded devices can be used to assess the impact of congestion control on throughput and packet delivery ratio (PDR), or so-called multimedia content delivery. Vehicle networking and the distribution of multimedia content have become essential factors in getting packets to their intended recipients due to the availability of bandwidth. Vehicle-to-infrastructure (V2I) communication systems are crucial in vehicular ad hoc networks (VANETs), which permit vehicles to connect by distributing and delivering traffic data and transmission packet schemes. High levels of mobility and changing network topology necessitate dispersed monitoring and execution for congestion control. The amount of traffic congestion for packet transfers could be reduced by enhancing congestion management in terms of throughput and PDR percentages. In a highway setting, the Taguchi approach has been used to optimize the parameters for congestion control. Based on throughput and PDR performance measures, this technique minimizes superfluous traffic information and lowers the likelihood of network congestion. The simulation results have shown that the proposed approach performs better since it increases network performance while effectively utilizing bandwidth. The effectiveness of the suggested technique is evaluated using a typical VANETs scenario for V2I communication while driving on a highway.


optimization; packet delivery ratio; taguchi method; vehicle-to-infrastructure; vehicular ad hoc network;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578