Data detection method for uplink massive MIMO systems based on the long recurrence enlarged conjugate gradient

Ahlam Jawarneh, Zaid Albataineh, Michel Kadoch


Although the mean square error (MMSE) approach is recognized to be near optimal for uplinking large-scale multiple-input-multiple-output (MIMO) systems, there are certain difficulties in the procedure related to matrix inversion. The long recurrence enlarged conjugate gradient (LRE-CG) approach is proposed in this study as a way to iteratively realize the MMMS algorithm while avoiding the complications of matrix inversion. In addition, a diagonal-approximate starting solution to the LRE-CG approach was used to speed up the conversion rate and reduce the complications required. It has been discovered that the LRE-CG-based approach has the ability to significantly reduce computational complexity. By comparing simulation results, it is clear that this new methodology surpasses well-established wayslike the Neumann series approximation-based method and the Gauss-Siedel iterative method. With a small number of iterations, the suggested approach achieves near-optimal performance of a standard MMSE algorithm.


Conjugate gradient; Large-scale MIMO systems; Long-recurrence enlarged; conjugate-gradient; Multiple-input multiple-output; Neumann series approximation;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).