Fuzzy optimization strategy of the maximum power point tracking for a variable wind speed system

Belkacem Belkacem, Noureddine Bouhamri, Lahouari Abdelhakem Koridak, Ahmed Allali


Wind power systems are gaining more and more interests; in order to diminish dependence on fossil fuels. In this paper, we present a variable speed-wind energy global system based on a synchronous generator with permanent magnetic (PMSG). The major goal of this study is to track the maximum power that is present in the turbine. An examination of control methods to extract the MPPT point, from a wind energy conversion system (WECS) under variable speed situations is presented. An intelligent controller based on the fuzzy logic control (FLC) is proposed for regulating permanent magnetic synchronous generator (PMSG) output power, in order to improve tracking performance. The principle of this maximum power point tracking (MPPT) algorithm consists in looking for an optimal operating relation of the maximum power, then tracking this last. We simulated our system with MATLAB-Simulink software. The found results will be debated to elucidate performance of the global system.


Fuzzy logic control; Maximum power point tracking; Permanent magnetic; synchronous generator; Wind energy conversion system;

Full Text:


DOI: http://doi.org/10.11591/ijece.v12i4.pp4264-4275

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).