Breast cancer detection using machine learning approaches: a comparative study

Muawia A. Elsadig, Abdelrahman Altigani, Huwaida T. Elshoush


As the cause of the breast cancer disease has not yet clearly identified and a method to prevent its occurrence has not yet been developed, its early detection has a significant role in enhancing survival rate. In fact, artificial intelligent approaches have been playing an important role to enhance the diagnosis process of breast cancer. This work has selected eight classification models that are mostly used to predict breast cancer to be under investigation. These classifiers include single and ensemble classifiers. A trusted dataset has been enhanced by applying five different feature selection methods to pick up only weighted features and to neglect others. Accordingly, a dataset of only 17 features has been developed. Based on our experimental work, three classifiers, multi-layer perceptron (MLP), support vector machine (SVM) and stack are competing with each other by attaining high classification accuracy compared to others. However, SVM is ranked on the top by obtaining an accuracy of 97.7% with classification errors of 0.029 false negative (FN) and 0.019 false positive (FP). Therefore, it is noteworthy to mention that SVM is the best classifier and it outperforms even the stack classier.


breast cancer detection; deep learning; machine learning; classification algorithms; breast cancer diagnosis;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).