Modern drowsiness detection techniques: a review

Sarah Saadoon Jasim, Alia Karim Abdul Hassan

Abstract


According to recent statistics, drowsiness, rather than alcohol, is now responsible for one-quarter of all automobile accidents. As a result, many monitoring systems have been created to reduce and prevent such accidents. However, despite the huge amount of state-of-the-art drowsiness detection systems, it is not clear which one is the most appropriate. The following points will be discussed in this paper: Initial consideration should be given to the many sorts of existing supervised detecting techniques that are now in use and grouped into four types of categories (behavioral, physiological, automobile and hybrid), Second, the supervised machine learning classifiers that are used for drowsiness detection will be described, followed by a discussion of the advantages and disadvantages of each technique that has been evaluated, and lastly the recommendation of a new strategy for detecting drowsiness.

Keywords


identification of fatigue classification; machine learning classifiers; optical image processing driver drowsiness sensors;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i3.pp2986-2995

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).