A new windings design for improving single-phase induction motor performance

Zuriman Anthony, Erhaneli Erhaneli, Yusreni Warmi, Zulkarnaini Zulkarnaini, Anggun Anugrah, Sepannur Bandri


Single-phase induction (asynchronous) motors are widely used at home. These motors have two windings and usually operate at a lower performance than 3-phase asynchronous motors which have three windings. For this reason, this study aims to design a new winding of a single-phase asynchronous motor by increasing the number of phases in the motor windings in order to increase the performance of the motor. This research was focused on 36 slot capacitor-start capacitor-run asynchronous motor. The design used 4 non-identical windings in the motor, where three windings acted as auxiliary windings and one winding acted as main winding. The rated current of the designed motor winding was 2.74 A for the main winding and 3.15 A for the auxiliary winding. The performance of the designed motor compared to the traditional single-phase asynchronous motor with the same structure of stator, rotor, and rated current. A traditional single-phase asynchronous motor had data: 1 HP, 220 V, 8.3 A, 1440 RPM, 50 Hz, and 4 poles. The results of this study indicated that the designed motor operated with power factors almost close to unity and had higher output power, torque, and efficiency than the traditional single-phase asynchronous motors.


Capacitor motor; Four-phase winding; Induction motor performance; Motor winding design; Single-phase induction motor

Full Text:


DOI: http://doi.org/10.11591/ijece.v12i6.pp5789-5798

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578