Single phase second order sliding mode controller for complex interconnected systems with extended disturbances and unknown time-varying delays

Cong-Trang Nguyen, Chiem Trong Hien, Van-Duc Phan


Novel results on complex interconnected time-delay systems with single phase second order sliding mode control is investigated. First, a reaching phase in traditional sliding mode control (TSMC) is removed by using a novel single phase switching manifold function. Next, a novel reduced order sliding mode observer (ROSMO) with lower dimension is suggested to estimate the unmeasurable variables of the plant. Then, a new single phase second order sliding mode controller (SPSOSMC) is established based on ROSMO tool to drive the state variables into the specified switching manifold from beginning of the motion and reduce the chattering in control input. Then, a stability condition is suggested based on the well-known linear matrix inequality (LMI) method to ensure the asymptotical stability of the whole plant. Finally, an illustrated example is simulated to validate the feasible application of the suggested technique.


Chattering removal; Reduced-order observer; Sliding mode control; Unknown time-varying delay; Without reaching phase

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).