End-to-end deep auto-encoder for segmenting a moving object with limited training data

Abdeldjalil Kebir, Mahmoud Taibi


Deep learning-based approaches have been widely used in various applications, including segmentation and classification. However, a large amount of data is required to train such techniques. Indeed, in the surveillance video domain, there are few accessible data due to acquisition and experiment complexity. In this paper, we propose an end-to-end deep auto-encoder system for object segmenting from surveillance videos. Our main purpose is to enhance the process of distinguishing the foreground object when only limited data are available. To this end, we propose two approaches based on transfer learning and multi-depth auto-encoders to avoid over-fitting by combining classical data augmentation and principal component analysis (PCA) techniques to improve the quality of training data. Our approach achieves good results outperforming other popular models, which used the same principle of training with limited data. In addition, a detailed explanation of these techniques and some recommendations are provided. Our methodology constitutes a useful strategy for increasing samples in the deep learning domain and can be applied to improve segmentation accuracy. We believe that our strategy has a considerable interest in various applications such as medical and biological fields, especially in the early stages of experiments where there are few samples.


Auto-encoder; Data augmentation; Limited data; Principal component analysis; Segmentation; VGG16

Full Text:


DOI: http://doi.org/10.11591/ijece.v12i6.pp6045-6057

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578