An agent-based model to assess coronavirus disease 19 spread and health systems burden
Abstract
The present pandemic has tremendously raised the health systems’ burden around the globe. It is important to understand the transmission dynamics of the infection and impose localized strategies across different geographies to curtail the spread of the infection. The present study was designed to assess the transmission dynamics and the health systems’ burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using an agent-based modeling (ABM) approach. The study used a synthetic population with 31,738,240 agents representing 90.67 percent of the overall population of Telangana, India. The effects of imposing and lifting lockdowns, nonpharmaceutical interventions, and the role of immunity were analyzed. The distribution of people in different health states was measured separately for each district of Telangana. The spread dramatically increased and reached a peak soon after the lockdowns were relaxed. It was evident that is the protection offered is higher when a higher proportion of the population is exposed to the interventions. ABMs help to analyze grassroots details compared to compartmental models. Risk estimates provide insights on the proportion of the population protected by the adoption of one or more of the control measures, which is of practical significance for policymaking.
Keywords
Agent-based model; Coronavirus disease; SARS-CoV-2; Non-pharmaceutical; interventions; India;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v12i4.pp4118-4128
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).