Brain tumor visualization for magnetic resonance images using modified shape-based interpolation method

Dina Mohammed Sherif El-Torky, Mohamed Ismail Roushdy, Maryam Nabil Al-Berry, Mohammed Abd El-Mageed Salem

Abstract


3D visualization plays an essential role in medical diagnosis and setting treatment plans especially for brain cancer. There have been many attempts for brain tumor reconstruction and visualization using various techniques. However, this problem is still considered unsolved as more accurate results are needed in this critical field. In this paper, a sequence of 2D slices of brain magnetic resonance Images was used to reconstruct a 3D model for the brain tumor. The images were automatically segmented using a wavelet multi-resolution expectation maximization algorithm. Then, the inter-slice gaps were interpolated using the proposed modified shape-based interpolation method. The method involves three main steps; transferring the binary tumor images to distance images using a suitable distance function, interpolating the distance images using cubic spline interpolation and thresholding the interpolated values to get the reconstructed slices. The final tumor is then visualized as a 3D isosurface. We evaluated the proposed method by removing an original slice from the input images and interpolating it, the results outperform the original shape-based interpolation method by an average of 3% reaching 99% of accuracy for some slice images.

Keywords


brain tumors; magnetic resonance images; shape-based interpolation; visualization;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i3.pp2553-2563

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).