Optimized reduction approach of congestion in mobile ad hoc network based on Lagrange multiplier

Marwa K. Farhan, Muayad S. Croock


Over the past decades, computer networks have experienced an outbreak and with that came severe congestion problems. Congestion is a crucial determinant in the delivery of delay-sensitive applications (voice and video) and the quality of the network. in this paper, the Lagrangian optimization rate, delay, packet loss, and congestion approach (LORDPC) are presented. A congestion avoidance routing method for device-to-device (D2D) nodes in an ad hoc network that addresses the traffic intensity problem. The method of Lagrange multipliers is utilized for active route election to dodge heavy traffic links. To demonstrate the effectiveness of our proposed method, we applied extensive simulation that presents path discovery and selection. Results show that LORDPC decreases delay and traffic intensity while maintaining a high bitrate and low packet loss rate and it outperformed the ad hoc on-demand distance vector (AODV) protocol and the Lagrangian optimization rate, delay, and packet loss, approach (LORDP).


Congestion optimization; D2D communication; Lagrange multipliers; Mobile ad hoc network; Routing

Full Text:


DOI: http://doi.org/10.11591/ijece.v12i6.pp6341-6349

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578