Forecasting movie rating using k-nearest neighbor based collaborative filtering

Prakash Pandharinath Rokade, PVRD Prasad Rao, Aruna Kumari Devarakonda

Abstract


Expressing reviews in the form of sentiments or ratings for item used or movie seen is the part of human habit. These reviews are easily available on different social websites. Based on interest pattern of a user, it is important to recommend him the items. Recommendation system is playing a vital role in everyone’s life as demand of recommendation for user’s interest increasing day by day. Movie recommendation system based on available ratings for a movie has become interesting part for new users. Till today, a lot many recommendation systems are designed using several machine learning algorithms. Still, sparsity problems, cold start problem, scalability, grey sheep problem are the hurdles for the recommendation systems that must be resolved using hybrid algorithms. We proposed in this paper, a movie rating system using a k-nearest neighbor (KNN-based) collaborative filtering (CF) approach. We compared user’s ratings for different movies to get top K users. Then we have used this top K set to find missing ratings by user for a movie using CF. Our proposed system when evaluated for various criteria shows promising results for movie recommendations compared with existing systems.


Keywords


Collaborative filtering; K-nearest neighbor; Machine learning; Recommended system

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i6.pp6506-6512

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578