Analysis of combined approaches of CBIR systems by clustering at varying precision levels

S. M. Zakariya, Imtiaz A. Khan

Abstract


The image retrieving system is used to retrieve images from the image database. Two types of Image retrieval techniques are commonly used: content-based and text-based techniques. One of the well-known image retrieval techniques that extract the images in an unsupervised way, known as the cluster-based image retrieval technique. In this cluster-based image retrieval, all visual features of an image are combined to find a better retrieval rate and precisions. The objectives of the study were to develop a new model by combining the three traits i.e., color, shape, and texture of an image. The color-shape and color-texture models were compared to a threshold value with various precision levels. A union was formed of a newly developed model with a color-shape, and color-texture model to find the retrieval rate in terms of precisions of the image retrieval system. The results were experimented on on the COREL standard database and it was found that the union of three models gives better results than the image retrieval from the individual models. The newly developed model and the union of the given models also gives better results than the existing system named cluster-based retrieval of images by unsupervised learning (CLUE).

Keywords


Content-based image retrieval; Graph partitioning method; Precision levels; Unsupervised learning; Visual features extraction

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i6.pp5009-5018

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).