Amateur radio sensing technique using a combination of energy detection and waveform classification

Narathep Phruksahiran

Abstract


A critical problem in spectrum sensing is to create a detection algorithm and test statistics. The existing approaches employ the energy level of each channel of interest. However, this feature cannot accurately characterize the actual application of public amateur radio. The transmitted signal is not continuous and may consist only of a carrier frequency without information. This paper proposes a novel energy detection and waveform feature classification (EDWC) algorithm to detect speech signals in public frequency bands based on energy detection and supervised machine learning. The energy level, descriptive statistics, and spectral measurements of radio channels are treated as feature vectors and classifiers to determine whether the signal is speech or noise. The algorithm is validated using actual frequency modulation (FM) broadcasting and public amateur signals. The proposed EDWC algorithm's performance is evaluated in terms of training duration, classification time, and receiver operating characteristic. The simulation and experimental outcomes show that the EDWC can distinguish and classify waveform characteristics for spectrum sensing purposes, particularly for the public amateur use case. The novel technical results can detect and classify public radio frequency signals as voice signals for speech communication or just noise, which is essential and can be applied in security aspects.


Keywords


Cognitive radio; Energy detection; Machine learning; Spectrum sensing; Waveform classification

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i1.pp399-410

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).