Text pre-processing of multilingual for sentiment analysis based on social network data

Neha Garg, Kamlesh Sharma


Sentiment analysis (SA) is an enduring area for research especially in the field of text analysis. Text pre-processing is an important aspect to perform SA accurately. This paper presents a text processing model for SA, using natural language processing techniques for twitter data. The basic phases for machine learning are text collection, text cleaning, pre-processing, feature extractions in a text and then categorize the data according to the SA techniques. Keeping the focus on twitter data, the data is extracted in domain specific manner. In data cleaning phase, noisy data, missing data, punctuation, tags and emoticons have been considered. For pre-processing, tokenization is performed which is followed by stop word removal (SWR). The proposed article provides an insight of the techniques, that are used for text pre-processing, the impact of their presence on the dataset. The accuracy of classification techniques has been improved after applying text pre-processing and dimensionality has been reduced. The proposed corpus can be utilized in the area of market analysis, customer behaviour, polling analysis, and brand monitoring. The text pre-processing process can serve as the baseline to apply predictive analysis, machine learning and deep learning algorithms which can be extended according to problem definition.


code-switch; linguistic-switching; machine learning; multilingual; pre-processing; sentiment analysis;

Full Text:


DOI: http://doi.org/10.11591/ijece.v12i1.pp776-784

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578