A novel predictive model for capturing threats for facilitating effective social distancing in COVID-19

Salma Firdose, Surendran Swapna Kumar, Ravinda Gayan Narendra Meegama

Abstract


Social distancing is one of the simple and effective shields for every individual to control spreading of virus in present scenario of pandemic coronavirus disease (COVID-19). However, existing application of social distancing is a basic model and it is also characterized by various pitfalls in case of dynamic monitoring of infected individual accurately. Review of existing literature shows that there has been various dedicated research attempt towards social distancing using available technologies, however, there are further scope of improvement too. This paper has introduced a novel framework which is capable of computing the level of threat with much higher degree of accuracy using distance and duration of stay as elementary parameters. Finally, the model can successfully classify the level of threats using deep learning. The study outcome shows that proposed system offers better predictive performance in contrast to other approaches.

Keywords


COVID-19; Deep learning; Machine learning; Pandemic; Social distancing

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v12i1.pp596-604

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).