Identification of important features and data mining classification techniques in predicting employee absenteeism at work
Abstract
Employees absenteeism at the work costs organizations billions a year. Prediction of employees’ absenteeism and the reasons behind their absence help organizations in reducing expenses and increasing productivity. Data mining turns the vast volume of human resources data into information that can help in decision-making and prediction. Although the selection of features is a critical step in data mining to enhance the efficiency of the final prediction, it is not yet known which method of feature selection is better. Therefore, this paper aims to compare the performance of three well-known feature selection methods in absenteeism prediction, which are relief-based feature selection, correlation-based feature selection and information-gain feature selection. In addition, this paper aims to find the best combination of feature selection method and data mining technique in enhancing the absenteeism prediction accuracy. Seven classification techniques were used as the prediction model. Additionally, cross-validation approach was utilized to assess the applied prediction models to have more realistic and reliable results. The used dataset was built at a courier company in Brazil with records of absenteeism at work. Regarding experimental results, correlationbased feature selection surpasses the other methods through the performance measurements. Furthermore, bagging classifier was the best-performing data mining technique when features were selected using correlation-based feature selection with an accuracy rate of (92%).
Keywords
absenteeism at work; classification algorithms; data mining; feature selection; prediction model;
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v11i5.pp4587-4596
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).